MS-22 | Soyuz 2.1a | Everyday Astronaut

Lift Off Time
September 21, 2022 – 14:54 UTC
Mission Name
MS-22, crewed flight to the International Space Station (ISS)
Launch Provider
(What rocket company launched it?)
(Who paid for this?)
Soyuz 2.1a
Launch Location
Launch Complex 31/6, Baikonur Cosmodrome, Kazakhstan
Payload mass
7,080 kg (15,610 Ib) (for the whole spacecraft)
Where did the spacecraft go?
It will rendezvous with the ISS, ~400 km low Earth orbit (LEO) at a 51.66° inclination
Did they attempt to recover the first stage?
No, this is not a capability of Soyuz
Where did the first stage land?
The boosters will crash into the steps of Kazakhstan
Did they attempt to recover the fairings?
No, this is not a capability of Soyuz
Were these fairings new?
This was the:
– 7th Soyuz 2.1a mission in 2022
– 64th Soyuz 2.1 a mission overall

– 119th orbital launch attempt of 2022
Where to watch
If available, an official replay will be listed here

How Did It Go?

ROSCOSMOS successfully launched the Soyuz MS-22 mission to the International Space Station (ISS) on 21 September 2022. This launch sees three new crew members joining the station, cosmonauts Sergey Prokopyev, Dmitry Petelin, and astronaut Francisco Rubio. ROSCOSMOS launched the crew using a Soyuz MS spacecraft atop a Soyuz 2.1a launch vehicle, from Launch Complex 31/6, at the Baikonur Cosmodrome in Kazakhstan. The mission is expected to last for 188 days, with the crew scheduled to return to Earth on March 28, 2023.

Soyuz MS-22 mission patch. (Credit: ROSCOSMOS)

Who Is On Soyuz MS-22?

The MS-22 crew is comprised of two Russian cosmonauts and one American astronaut. The crew is Sergey Prokopyev (Commander), Dmitry Petelin (Flight Engineer 1), and Francisco Rubio (Flight Engineer 2). The MS-22 backup crew is made up of Oleg Kononenko (Commander), Nikolai Chub (Flight Engineer 1), and Loral O’Hara (Flight Engineer 2).

Sergey Prokopyev

Commander: Sergey Prokopyev

MS-22 commander, Sergey Prokopyev, was selected as a Roscosmos cosmonaut in 2010, and graduated as a test cosmonaut in 2012. He then served as a flight engineer for Expedition 56/57, where he spent 197 days aboard the ISS. During Expedition 56/57, Prokopyev completed two EVAs.

MS-22 marks Prokopyev’s second spaceflight.

Dmitry Petelin

Flight Engineer 1: Dmitry Petelin

Roscosmos cosmonaut Dmitry Petelin was born in 1983. He studied at the South Ural State University, graduating in 2006 with a degree in aircraft and helicopter engineering. Petelin was then selected as a Roscosmos cosmonaut in 2012. He completed his training in 2014, thus being named a test cosmonaut.

The MS-22 mission is Petelin’s first journey to space!

Flight Engineer 2: Francisco Rubio

Francisco Rubio is an American army major, helicopter pilot, flight surgeon, and NASA astronaut. He was born in Los Angeles in 1975. Rubio attended the United States Military Academy, graduation with a degree in international relations.

Rubio was selected as a member of NASA Astronaut Group 22 in 2017. Like his crew-mate Petelin, MS-22 is Rubio’s first spaceflight!

Soyuz MS-22 Mission’s Profile

Approximate Timeline (Based On The Soyuz MS-18 Mission)

From Lift-Off
– 00:00:15 Engine start sequence
00:00:00 Lift-Off
+ 00:01:53 Escape tower jettison
+ 00:01:58 First stage separation
+ 00:02:33 Fairing jettison
+ 00:04:47 Second stage separation
+ 00:04:55 Tail section separation
+ 00:08:46 Third stage main engine cutoff
+ 00:08:49 Soyuz MS separation

What Is Soyuz 2.1a?

ROSCOSMOS’s Soyuz is a multi-use medium-lift launch vehicle that was introduced in far 1966 and since then has been the workhorse of the Soviet/Russian space program. It is capable to launch civilian and military satellites, as well as cargo and crewed missions to the ISS. Over the decades, several variants of the Soyuz rocket have been developed. Soyuz 2.1a is one of its latest iterations that belongs to the Soyuz-2 rocket family.

Soyuz MS-19
Soyuz 2.1a is starting its Soyuz MS-19 mission. (Credit: ROSCOSMOS)

The rocket consists of three stages, all of them are expendable. When launching to the ISS, Soyuz-2 can be flown with either a Progress capsule or a Soyuz spacecraft. On the Soyuz MS-22 mission, the Soyuz MS spacecraft will be used.

Soyuz 2.1a is about 46.3 meters (152 ft) in height and 2.95 meters (9 feet) in diameter. The vehicle’s total lift-off mass is approximately 312,000 kg (688,000 lb). The rocket’s payload lift capacity to low-Earth orbit (LEO) is between 6,600 and 7,400 kg depending on the launch site.


First Stage Second Stage Third stage
Engine 4 RD-107A RD-108A RD-0110
Total Thrust 840 kN (188,720 lbf),
sea ​​level
1,020 kN (229,290 lbf),
792 kN (178,140 lbf),
sea ​​level
922 kN (207,240 lbf),
298 kN (67,000 lbf),
Specific Impulse (ISP) 263 s, sea level
320 s, vacuum
258 s, sea level
321 s, vacuum
326 s, vacuum

Side Boosters

The first stage of the Soyuz 2.1a rocket is composed of four side boosters that are powered by RD-107A engines. Each one of the boosters has a conical shape and a dry weight of 3,784 kg. It is approximately 19.6 meters in length, with a diameter of 2.7 meters. Each side booster has two vernier thrusters that are used for flight control.

The RD-107A engine runs on rocket-grade kerosene (RP-1) and liquid oxygen (LOx). The propellants are stored in the pressurized aluminum alloy tanks, the kerosene tank is located in the cylindrical part of the booster, and the LOx one is in the conical section. Each one of those engines has four combustion chambers and together they are capable of producing a thrust of 840 kN at sea level and 1,020 kN in a vacuum.

"Korolev cross"Progress MS-16 mission, Soyuz 2.1a
“Korolev cross” seen during Stage I separation on the Progress MS-16 mission. (Credit: ROSCOSMOS’s livestream)

Perhaps, the most spectacular moment of the Soyuz-2 rocket’s launch is the separation of the first stage. It happens approximately two minutes after the launch. The boosters perform a pattern, known as the “Korolev cross” (named after Sergei Korolev, a very important figure of the USSR space program and history).

Second And Third Stages

The center core stage is powered by a single RD-108A engine, and the upper stage is fitted with a single RD-0110 engine. Both of these engines run on rocket-grade kerosene and LOx and have four combustion chambers. The second stage is 27.10 meters long, with a diameter of 2.95 meters, and a dry mass of 6,545 kg. It has four vernier thrusters for three-axis flight control.

The third stage of a Soyuz-2 rocket has a height of 6.7 meters, a diameter of 2.7 meters, and a dry mass of 2,355 kg. One interesting thing about the engine on this stage is that it starts its ignition sequence prior to stage separation. This process is called “hot fire staging”.

Soyuz MS Spacecraft

The Soyuz MS spacecraft is the latest version of Russia’s long-standing three-person spacecraft. Soyuz capsules first flew in the 1960s. The spacecraft’s external appearance is largely unchanged over this time. However, the internal systems and capabilities have been upgraded many times.

Soyuz MS spacecraft
The Soyuz MS spacecraft. (Credit: RKK Energia/ ROSCOSMOS)

The Soyuz MS variant is one of the versions from the fourth generation of this spacecraft. Its first flight was in 2006. Soyuz consists of three sections:

  • the orbital module
  • the descent module
  • the service module

The Orbital Module

This is the forward section of the spacecraft, the part that docks to the ISS. It is the part of the spacecraft where the crew will spend most of their time on orbit. It has more living room than the descent module. On the Progress uncrewed resupply missions, this is replaced by a cargo module.

The Descent Module

This is the middle section of the spacecraft. It is the only part that returns intact to land on Earth. This is where the crew will sit during the launch and the reentry. They will be wearing spacesuits in case of capsule depressurization. There is very little room for the crew of three in this module. On the Progress uncrewed resupply missions, this is replaced by a refueling module that can transfer fuel into the Russian segment. This can then be used by thrusters on the ISS to boost its orbit.

Soyuz descent module, inside
Inside the descent module. (Credit: NASA)

The Service Module

This is the aft (rear) section of the spacecraft. It provides the main engine used for manoeuvring on orbit and the thrusters for fine control during docking and departure. Also, it also contains the life support system for environmental control of the rest of the spacecraft. In addition, it also supports the solar panels and various radio communication systems.

Kurs-NA Automatic Docking System

Like the Soyuz spacecraft, Progress MS is equipped with a Kurs-NA automatic docking system that was first tested on the Progress M-15M mission in July 2012. Compared to its ancestor, Kurs-A, the new system has only one AO-753A rendezvous antenna. Kurs-A had five (two 2AO-VKA and three AKR-VKA) of them. This antenna broadcasts radar pulses that are needed to determine the altitude and relative position of the spacecraft to the ISS. Moreover, Kurs-NA uses less power than Kurs-A.

Sergey Ryzhikov, TORU system
Expedition 64 Commander Sergey Ryzhikov practices using the tele-robotically operated rendezvous unit (TORU). (Credit: NASA)

In addition, the Soyuz spacecraft can be docked to the ISS manually by the docking system called the Tele-Robotically Operated Rendezvous unit (TORU). This manual system serves as a backup to Kurs-NA in emergency situations and is located inside the Zvezda service module.

Rocket section adapted from Mariia Kiseleva

Leave a Comment